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ELASTIC SOLUTIONS IN A SEMI-INFINITE SOLID
WITH AN ELLIPSOIDAL INCLUSION

1. INTRODUCTION

The elastic fields due to inclusions in infinite media have been extensively investigated
using Eshelby's method ( 1957, 1959, 1961 ). Cases of more practical interest are the
elastic fields due to inclusion in semi-infinite media since many sites of initial strains,
resulting from high stresses due to contact, heating, or metallurgical transformations, are
confined to a near surface zone. The problem of an ellipsoidal inclusion which has
undergone a simple shear is of interest in connection with twinning and martensitic or other
diffusionless transformations. The elastic solution for an inclusion near the free surface has
been solved for a spherical inclusion with pure dilatational eigenstrain ( stress free
transformation strain ) ( Mindlin and Cheng, 1950B ), an ellipsoidal inclusion with pure
dilatational eigenstrains ( Seo and Mura, 1979 ) and a cuboidal inclusion with uniform
eigenstrains ( Chiu, 1977 ). In both Mindlin and Cheng's, and Seo and Mura's analyses,
the solutions are obtained by integrating the Green's function of a point force in the interior
of a semi-infinite solid ( Mindlin, 1936, 1953 ). In Chiu's analysis, the free surface
condition is satisfied by superimposing the solution of a half-space under normal surface
traction on the full space solution due to a cuboidal inclusion and its image with the uniform
eigenstrains.

The solution of the linear equations of equilibrium of an elastic body with a force
acting at a point within an isotropic body bounded by a plane has been solved by starting
with Kelvin's solution for a force in an infinite body and guessing the nuclei of strain to
add outside of the semi-infinite body so as to annul the tractions on the plane boundary (
Mindlin, 1936 ). The same resuits have been obtained directl " means of an application
of potential theory ( Mindlin, 1953 ). The stress functions of dit; : t strain of nuclei in the
semi-infinite elastic solid ( Mindlin and Cheng, 1950A ) are derived, by the processes of
superposition, differentiation and integration, from the solution for the single force in the

interior of the semi-infinite solid.
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The method of Hankel transformations, elaborated for cylindrically symmetrical
problems of the theory of elasticity in Sneddon's book ( 1951 ), has been used to solve the
stress field of a circular edge dislocation loop with Burger's vector normal to the plane of
the loop ( prismatic loop ) in an unbounded solid ( Kroupa, 1960 ) and in the half space (
Bastecka, 1964 ).

In the present study, Eshelby’'s method for the ellipsoidal inclusion, the Hankel
transformation method for the axisymmetric problems and the Mindlin's stress functions
for strain nuclei of double force with moment are used for the analysis of the elastic
solution of an ellipsoidal inclusion in the half space when a uniform eigenstrain with

T

T T _ T T T L o . :
components €33, €, = €54, €31, €33and €, = 0 are given initially inside the inclusion.

Existing solutions are shown to be special cases of the present one.

2. ELASTIC SOLUTIONS

T
The present problem is to express the elastic field when the eigenstrain €;; in an

ellipsoidal subdomain Q, (with semi-axes a, , a,, a;,and center at x, =x, =0 and x; =c )
of the half space x;> 0 ( Fig.l ) is made up of components erl = eg'z , eI3 ,
e}l , e; and e'fz = 0. In order that the plane x, = 0 be a surface free of extemal tractions,

the stress components on this plane must satisfy the following boundary conditions
(013)x,=0=(023)x,=0=(633)x,=0=0’ D

and both the equations of equilibrium

%= 0> )
and the compatibility equations
Vo, +—t
ot 1+vo.ij=0’ (3)




where the numerical suffixes, i, j = 1, 2, 3, following a comma denote differentiation with
respect to the Cartesian coordinates x,, X,, X,, respectively; a repeated suffix is summed

over values 1, 2, 3, and v is the Poisson’s ratio.

Similar to the approaches ofBastecka ( 1964 ) and Chiu (1978), the stress o in the half
space x, 2 0 outside the axisymmetric ellipsoidal inclusion centered at the point (0,0,c) can
be expressed as

1 o,

0;;=0;;+0;,+0';, 4)
which satisfies the required boundary conditions, Eq.(1), the equilibrium condition,
Eq.(2). the compatibility equations, Eq.(3), and also converges to zero for x, and x,
approaching oo and x, approaching oo . In Eq.(4), the term o:j is the stress caused by the
inclusion Q, centered at (0,0,¢) in an isotropic infinite body and can be obtained by using
Eshelby's method (1961) with displacements

v T I

. I
L1 ] ——e0,, ()
4n(l-v)

u;= ey .. — 1 eTktp[
8R(I—V) kY ijk P 1kV k

1

where \Vland ¢I, respectively, are the biharmonic and harmonic potentials of attracting
matter of unit density filling the volume Q, and e'= eI‘m with repeat index m sum over 1, 2
and 3. O'iljl is the stress caused by the image inclusion Q, centered at the point (1,0,-¢) in an
isotropic infinite body, with eigenstrain |
(el )=~ (L. (6)

The solution for the stresses oi? is obtained by translating the origin of coordinates in
Eq.(4) from points (0,0,c) to (0,0,- ¢). The additional stress &', i in Eq.(4) is the fictitious
stress necessary to make the surface of the half-space free of stresses and it satisfies the

boundary conditions

1 o
(0'33)x,=20==( 033+ G33)x,=0,




, I a
(0'13)x,=0=—( O3+ O 3)x,=0, (7

, 1 o
(o z3)x, =0=—( 0'23+' o'23))(,=0-

The elastic solution of an inclusion in a half-space present in this report are solved first
by considering the inclusion with pure principal eigenstrains eTl = egz , e§3 and then the
inclusion with pure shear eigenstrains e}l , e;:, and eTz = 0 is solved. The final solution is

the linear superposition of these solutions.

(A) Inclusion with with pure principal eigenstrains ch = CIz , e§3 .

The stress field of the axisymmetric penny shape inclusion with principal eigenstrains
e}; in an infinite medium obtained by Eshelby method is compared with the stress field of
a prismatic loop with radius a and Burger's vector b in an infinite medium as obtained by
Kroupa ( Yu and Sanday, 1988 ). A relationship is found between the potential function ¢
of the inclusion and the integral function I{)l, which involves the product of Bessel
functions J, , for the solution of the prismatic loop. That is

1

T
€330, t))
2mab 3

Ip =

where in cylindrical coordinate ( r, 0,z )

1= [0 O e, e ar (9)

and J_ is the Bessel function of the mth order. In Egs. (8) and (9), both the harmonic
potential ¢ and the integral function I;)l are taken the origin as the center of the inclusion

and the center of the dislocation loop, respectively.

Then the fictitious stress field is solved first for the two dimensional problem by using
the Hankel transformation method and then it is transformed into the three dimensional

case by use of the relationship between ¢ and I;,l. The displacements solved are




T T
(e33—€yy) 1 I I o
= [ 33— 2V |+ 22y 333+ 34V ;34
8n(1-v) .

— 2% |5y - 4220 |~ 22-3v)0 | |

T
(14+v)e;, I -
- L 06,+ 220 3+ (~4v) ¢ ],
4r(1-v)
( ey )
- I 1 1§ 1§
uz= e (W,33- 2ve ,+ 22“’,2333 +(34V)V 53,
11 i | 14
- 212“’.233‘ 42-v)zh 53— 2(2-3v)9 , |
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and the stresses are
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and the dilatational stress is
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where \ynand ¢n are the biharmonic and harmonic potential of attracting matter of unit

density filling the volume Q,, respectively.




The ad. _onal justification for the substitution of Eq. (8) is that Esheiby ( 1961 ) has
shown that the remote field of a finite prismatic loop with area A and Burgers vector b is
the same as the remote field of an inclusion of arbitrary shape whose volume V and the

stress free strain c;‘3 ( parallel to b ) satisfy

Ves;= Ab, (13)

For a circular edge dislocation loop of radius a and the x,-axis (or z-axis) as the axis of

symmetry in an unbounded medium, the stress field is found by Kroupa (1960) by using
Hankel transformations. Since for the remote field the inclusion can be of any shape,
therefore, the harmonic potential ¢ for a spherical inclusion of radius a is chosen, Then
Egs. (8) and (13) give

li=3g (a0, (14)

which is the same as obtained from the mathematics formula given by Eason, Noble and
Sneddon ( 1955 ). There, the substituting of Eq.(8) is not limited to penny shape inclusion,
it can apply to any ellipsoidal inclusion because we can let the radius of the dislocation loop
approach zero and integrate the solutions over the volume of the inclusion which gives the

results in term of potential functions.

(B) Inclusion with with pure shear eigenstrains e}l , e}3 and eTz =0.

The linear elastic solution for an inclusion with pure shear eigenstrain is obtained
indirectly by the application of Kelvin's solution for double force with moment in an
infinite body and Mindlin's solution for double force with moment in an semi-infinite body
. A comparison between Kelvin's solution for double force with moment in an infinite

body and Eshelby's solution for an inclusion with pure shear eigenstrain is conducted




first. A relation between these two solutions is established first. Then the solution for the
inclusion in the half space can be obtained by substituting this relationship into the solution
obtained by Mindlin for the semi-infinite solid. '

For the double force with strength A in the x x direction with moment about x; axis

and the double force with strength A in x5 direction with moment about y axis in infinite

solid, the Galerkin vector is ( Mindlin, 1936 )

E=EAX3/R+EAX1/R, (15)

where R% = xf + x% + xg. The displacements derived from Eq. (15) are

A
wi= (200 ;%50 1],
A
uy=—[x30 ,,l, (16)
1
A
u3y= —,; [ 2(1-V)(P_ 1-x3¢,13] ’

For penny shape inclusion (disc; a, = a,, a; =0 ) with eL = eL are the only non-zero
components of e;rj. Eq. (1) gives the displacement as

T

u = —;c—l3—' [ 2(1-V)¢ 3—X3¢ ll] ’
4n(1-v) ' '
T

Uy =- °13 [X3¢ 12]9 (17)
ax(l-v)

T

Uy=-= Lt [2(1-v)¢ ;~x3 4],
4n(1-v) ' ’

where ¢ is the harmonic potential of attracting matter of unit density filling the inclusion

volume Q centered at ( 0,0,0 )and is




¢ =] pdr. (18)

Eq. (18) is valid for all shapes of ellipsoidal inclusion not just for penny shape inclusion.
By comparing Egs. (16) ~nd (17), it is found that the solution for the inclusion with pure
shear eigenstrain eIl = e;r3 can be obtained by integrating the results of the double forces

with the same strength A in both the x| and x 3 direction with moment about x, axis in an

infinite solid for the strain over the volume element of the inclusion provided that

T
ne;s

A=- .
an(1-v)

(19)

For the double force at point ( 0.0,c ) with strength A in both x and z directions
with moments about y axis in semi infinite solid, the Galerkin vector is ( Mindlin and
Cheng, 1950A)

2
- + X3=C Xx3—3c 2 (x3+¢)

F= - - 4(1-v)(1-2
if R, R, R, 4(1-v)(1-2v) log(R, + x5+ ¢)]
= X; Xy 8v(1-v)xy 4(1-2v){(1-v)x3—vc)x . 2cx3x,
ﬁ_l- R, ) R, l Rz(R2+X3+C) R3
2
. 2c(x3+0o)x;  H1-v)x,
. R, - 20)

Where R%: ( xl—c)2+ x§+ ng andR%: ( x1+c)2+ x§+ x§ . The stress field of these
double forces can be obtained accordingly and by substituting Eq. (18), the dispalcement in

the matrix due to the inclusion with pure shear eigenstrain eL = eT3 ,and all others equal to
0 is found to be

el I I I I
Uy =———— [ ,3-2(1-V)$ 5 ~ 22y ;55— G4y |3
4n(1-v)
I i o
+22% |3+ 41-v)zd || +2(1-v)6 4 ],
T
e 1 I o , 1 u
u, ="_l'3—[‘|’.123 = 22 1533= G4V (5372279 13+ H1-Vv)z9 11, (21)
4r(1-v)
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T
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I I o
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and the dilatational field is
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)|

T
(1+V)pe I I I
o= ——13’[‘4’,13"3‘3’,13‘224’,133*2“’.1333]- (23)

n(1-v)

The solution for inclusion with e;; = e’;‘z, all others = 0 is found by cyclic permutation of
( 1,2,3). Solution Egs.(11) and (22) can be shown to satisfy the boundary conditions, Eq.
(1), equilibrium, Eq. (2) and compatibility, Eq. (3).

3. DISCUSSION

In the present analysis, the elastic field caused by an ellipsoidal inclusion was
investigated for a semi-infinite solid. An infinite, isotropic elastic space was considered
first with two ellipsoidal domains of the same shape with centers located at ( 0,0,c ) and (
0,0,-c ). The two domains are arranged to be mirror images of each other with initial
eigenstrain equal in magnitude but of opposite sign. The stress field for given initial
eigenstrains in the two domains can be obtained from superposition of stresses of each
single domain in an infinite solid obtained by Eshelby's method. A fictitious stress is
superimposed such that the the plane x 3 = 0 is stress-free. This fictitious stress is obtained
by the method of Hankle's transformations or by integration of the elastic solutions for

nuclei of strain in the semi-infinite solid.

An important aspect that should be pointed out here is that the image field ( the stress
field due to the image inclusion plus the fictitious stress ) which is superposed to the stress
field from the single inclusion in the infinite solid in order to satisfy the free surface free of
stress will change the initial eigenstrain in the inclusion. More specifically, the problem
considered here was that when a initial eigenstrain of the inclusion in an infinite solid is
given instead of a given initial condition in a half-space under consideration. Therefore the

statements given in sections § 2.1 and § 4.1 in Eshelby's paper ( 1961 ) regarding the

11




sum of the original field and the image field are chosen so that the boundary conditions on
the outer surface of the matrix are satisfied should be carefully interpreted. For example,
consider a cavity in an half-space under external load as a special case of the ellipsoidal
inhomogeneity. Then the image stresses not only have to satisfy the boundary condition at
the free surface but also vanish at the inclusion-matrix interface. Consequently, when an
inclusion in the half-space is considered, the image stress should satisfy not only the free
surface boundary conditions, but also the boundary conditions at the inclusion-matrix
interface.

It was also found out by using the relation I(')l =a/2R whena —0 ( as given in
Eq.(14) ), we can obtain the elastic solutions of some of the nuclei of strain in the semi-
infinite solid by directely application of Hankel's transformation technique and the Kelvin's
solution for a force in an infinite body. Instead as shown by Mindlin and Cheng ( 1950A )
that they are derived, by the processes of superposition, differentiation and integration,
from the solution for the single force in the interior of the semi-infinite solid. The nuclei of

strain solved by present approach are those axisymmetric to the x ; axis which is normal to
the free surface, such as single force in x5 direction, double force in x5 direction, center of

dilatation, doublet with axis parallel to x5 axis.
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X, ,Z

Fig. 1 - Ellipsoidal inclusion Q, with principal half-axes a,, a, and a,
in a half space and its image Q,.
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